Phase sensitivity function for hybrid limit-cycle oscillators via the adjoint method
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Hybrid systems are dynamical systems characterized by coexistence of continuous and dis-
crete dynamics [1]. They are utilized to describe the behavior of systems that contains some
kind of discontinuous events. Such systems arise in diverse area, including impacting me-
chanical systems, control theory, power electronics, chemical process systems, biology and
economics. Many hybrid systems exhibit periodic behavior because discontinuous events
can trap the evolving continuous state within a constrained region of state space. Therefore,
there emerges a new class of stable limit-cycling behavior which is induced by discontinuity,
and whose issue of synchrony remains to be addressed. Phase-reduction method provides a
useful framework for the analysis of stable limit-cycle oscillators [2,3]. As long as the pertur-
bation is sufficiently weak, the dynamics of the limit-cycles can be captured quantitatively
by a scalar phase equation. The phase reduction method has been widely used to study
synchronization properties of various types of oscillators [4]. However, the adjoint method
[5], which provides numerically accurate linear phase response of oscillator = s phase to ap-
plied perturbation, called phase sensitivity function, cannot be applied to hybrid limit-cycle
oscillators straightforwardly due to the non-smoothness of the vector field of hybrid systems.
In this study, we develop an extension of the conventional adjoint method to hybrid systems,
which enables us to find semi-analytically a phase sensitivity function from a set of equations
of the system.
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